Abstract
Studies on the assembly of pure lipid components allow mechanistic insights toward understanding the structural and functional aspects of biological membranes. Molecular dynamic (MD) simulations on membrane systems provide molecular details on membrane dynamics that are difficult to obtain experimentally. A large number of MD studies have remained somewhat disconnected from a key concept of amphipathic assembly resulting in membrane structures--shape parameters of lipid molecules in those structures in aqueous environments. This is because most of the MD studies have been done on flat lipid membranes. With the above in view, we analyzed MD simulations of 26 pure lipid patches as a function of (1) lipid type(s) and (2) time of MD simulations along with 35-40 ns trajectories of five pure lipids. We report, for the first time, extraction of curvature preferences of lipids from MD simulations done on flat bilayers. Our results may lead to mechanistic insights into the possible origins of bilayer asymmetries and domain formation in biological membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.