Abstract
We investigated the extractability of manganese (Mn) and iron (Fe) oxides from typical Japanese soils (Entisols, Inceptisols, and Andisols) by 0.5 mol L−1 hydroxylamine hydrochloride (NH2OH-HCl) extraction (pH 1.5; 16 h shaking at 25°C; soil:solution ratio 1:40), referred as to HHmBCR, which is Step 2 (used for the reducible fraction) of the modified BCR (Community Bureau of Reference) sequential extraction procedure. The HHmBCR procedure extracted almost all Mn oxides from the non-Andisol samples, but failed to extract a part of the Mn oxides from some Andisol samples. The procedure extracted most short-range ordered Fe oxides from non-Andisol samples, but it extracted only 7.5% and 13% of the short-range ordered Fe oxides from allophanic and non-allophanic Andisol samples, respectively. This remarkably low extractability of Fe oxides suggests that the HHmBCR method is not suitable for extracting oxide-occluded heavy metals from Andisols. Since the extraction rate of short-range ordered Fe oxides from various soils with the extractant was negatively correlated with the amounts of oxalate- and pyrophosphate-extractable Al even when the variability of the extraction pH was reduced by increasing the soil:solution ratio from 1:40 to 1:500, the extractability of Fe oxides would be negatively affected by the presence of active Al, including allophane/imogolite, amorphous Al, and Al-humus complexes. Because these Al constituents are abundant in Andisols, they would be at least partially responsible for the lower extractability of Fe oxides by HHmBCR from Andisols.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have