Abstract
Breast cancer (BC) is a complex disease with diverse manifestations, often resulting in lymph node metastasis (LNM) and impacting patient prognosis. Extrachromosomal circular DNA (eccDNA) has emerged as a key player in tumorigenesis, yet its contribution to BC LNM remains elusive. Here, we examined primary tumors and matched LNM tissues from 19 BC patients using the Circle-Seq method. We identified a median count of 44,682 eccDNA in primary tumor tissues and 38,057 in their paired LNM tissues. Furthermore, a ladder-like size distribution is observed in both primary tumor and LNM tissues. Meanwhile, similar repeat sequence distribution and GC content are identified from both primary tissue and LNM tissues. Finally, we found that eccDNA from both groups are flanked with palindromic trinucleotide motifs. These observations indicate that eccDNA of primary tumor and LNM tissues are from similar chromosomal origins. However, a subset of miRNA-associated eccDNA displayed selective enrichment in metastatic lesions, such as miR-6730 and miR-548AA1 genes. This observation implicates the function of miRNA-related eccDNA in the metastatic cascade. Our study uncovers the potential significance of these unique eccDNA molecules, shedding light on their role in cancer metastasis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have