Abstract

ObjectiveTo investigate the lung cancer-promoting mechanism of mesenchymal stem cell-secreted extracellular vesicles (MSC-EV).MethodsEV were isolated from culture media of human bone marrow-derived MSCs that were pre-challenged with or without hypoxia (referred to as H-EV and N-EV, respectively). After treatment with N-EV or H-EV, A549 and H23 cell proliferation, apoptosis, trans-well invasion and epithelial-to-mesenchymal transition (EMT) were examined. Polarization of human primary monocytes-derived macrophages with or without N-EV or H-EV induction were analyzed by flow cytometry and ELISA. PTEN, PDCD4 or RECK gene was overexpressed in A549 cells, while miR-21-5p was knocked down in MSCs, A549 or H23 lung cancer cells or primary monocytes by miR-21-5p inhibitor transfection. Protein level of PTEN, PDCD4, RECK, AKT or STAT3 as well as phosphorylation level of AKT or STAT3 protein were assayed by western blot. Tumorigenicity of A549 and H23 cells with or without MSC-EV co-injection was assayed on immunocompromised mice. The xenograft tumor were examined for cell proliferation, angiogenesis, apoptosis and intra-tumoral M1/M2 macrophage polarization.ResultsComparing to N-EV, H-EV treatment significantly increased A549 and H23 cell proliferation, survival, invasiveness and EMT as well as macrophage M2 polarization. MiR-21-5p knocked down significantly abrogated the cancer-promoting and macrophage M2 polarizing effects of H-EV treatment. H-EV treatment downregulated PTEN, PDCD4 and RECK gene expression largely through miR-21-5p. Overexpressing PTEN, PDCD4 and RECK in A549 cells significantly reduced the miR-21-5p-mediated anti-apoptotic and pro-metastatic effect of H-EV, while overexpressing PTEN in monocytes significantly reduced macrophage M2 polarization after induction with the presence of H-EV. H-EV co-injection significantly increased tumor growth, cancer cell proliferation, intra-tumoral angiogenesis and M2 polarization of macrophages in vivo partially through miR-21-5p.ConclusionsIncreased miR-21-5p delivery by MSC-EV after hypoxia pre-challenge can promote lung cancer development by reducing apoptosis and promoting macrophage M2 polarization.

Highlights

  • Mesenchymal stem cells (MSCs, known as mesenchymal stromal cells) are progenitor cells known for their inflammation resolving, wound healing and homeostasis maintaining properties with high heterogeneity [1]

  • Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promoted cell proliferation, survival, mobility and epithelial-to-mesenchymal transition (EMT) of NSCLC cells as well as macrophage M2 polarization in vitro Influences of mesenchymal stem cells on lung cancer development or the underlying mechanism of action remains unsettled

  • N-extracellular vesicle secretion (EV) treatment showed no significant influence on apoptosis of A549 or H23 cell challenged by hypoxia or cisplatin, both of which were significantly reduced by H-EV treatment

Read more

Summary

Methods

EV were isolated from culture media of human bone marrow-derived MSCs that were pre-challenged with or without hypoxia (referred to as H-EV and N-EV, respectively). After treatment with N-EV or H-EV, A549 and H23 cell proliferation, apoptosis, trans-well invasion and epithelial-to-mesenchymal transition (EMT) were examined. Polarization of human primary monocytes-derived macrophages with or without N-EV or H-EV induction were analyzed by flow cytometry and ELISA. PTEN, PDCD4 or RECK gene was overexpressed in A549 cells, while miR-215p was knocked down in MSCs, A549 or H23 lung cancer cells or primary monocytes by miR-21-5p inhibitor transfection. Protein level of PTEN, PDCD4, RECK, AKT or STAT3 as well as phosphorylation level of AKT or STAT3 protein were assayed by western blot. The xenograft tumor were examined for cell proliferation, angiogenesis, apoptosis and intra-tumoral M1/M2 macrophage polarization

Results
Conclusions
Introduction
Materials and methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call