Abstract

We have previously shown that the microfilarial (mf) stage of Brugia malayi can inhibit the mammalian target of rapamycin (mTOR; a conserved serine/threonine kinase critical for immune regulation and cellular growth) in human dendritic cells (DC) and we have proposed that this mTOR inhibition is associated with the DC dysfunction seen in filarial infections. Extracellular vesicles (EVs) contain many proteins and nucleic acids including microRNAs (miRNAs) that might affect a variety of intracellular pathways. Thus, EVs secreted from mf may elucidate the mechanism by which the parasite is able to modulate the host immune response during infection. EVs, purified from mf of Brugia malayi and confirmed by size through nanoparticle tracking analysis, were assessed by miRNA microarrays (accession number GSE157226) and shown to be enriched (>2-fold, p-value<0.05, FDR = 0.05) for miR100, miR71, miR34, and miR7. The microarray analysis compared mf-derived EVs and mf supernatant. After confirming their presence in EVs using qPCR for these miRNA targets, web-based target predictions (using MIRPathv3, TarBAse and MicroT-CD) predicted that miR100 targeted mTOR and its downstream regulatory protein 4E-BP1. Our previous data with live parasites demonstrated that mf downregulate the phosphorylation of mTOR and its downstream effectors. Additionally, our proteomic analysis of the mf-derived EVs revealed the presence of proteins commonly found in these vesicles (data are available via ProteomeXchange with identifier PXD021844). We confirmed internalization of mf-derived EVs by human DCs and monocytes using confocal microscopy and flow cytometry, and further demonstrated through flow cytometry, that mf-derived EVs downregulate the phosphorylation of mTOR in human monocytes (THP-1 cells) to the same degree that rapamycin (a known mTOR inhibitor) does. Our data collectively suggest that mf release EVs that interact with host cells, such as DC, to modulate host responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.