Abstract
Extracellular vesicles (EVs) are tissue-specific particles released by cells containing valuable diagnostic information in the form of various biomolecules. The characterization of EVs released by kidney grafts during normothermic machine perfusion (NMP) may present a promising avenue to assess graft status before transplantation. We phenotyped and determined the concentrations of EVs in the perfusate of 8 discarded expanded-criteria donor human kidneys during 6 h of NMP. Perfusate samples were taken at 0/60/180/360 min and examined with nanoparticle tracking analysis and imaging flow cytometry (IFCM). Using IFCM, EVs were identified by their expression of common EV markers CD9, CD63, and CD81 (tetraspanins) in combination with either platelet endothelial cell adhesion molecule (CD31), pan-leukocyte protein (CD45), or carboxyfluorescein succiminidyl ester (CFSE) fluorescence. Nanoparticle tracking analysis measurements revealed the release of nanoparticles <400 nm into the perfusate during NMP. With IFCM, tetraspanin protein signatures of the released nanoparticles were characterized, and the majority (~75%) of CFSE+ EVs were found to be CD81+, whereas ~16% were CD9+ and ~8% CD63+. Correlation analysis of concentrations of identified EV subsets with crude donor characteristics and NMP viability characteristics revealed significant correlations with cold ischemia time, donor age, and renal flow. Our findings demonstrate that discarded expanded-criteria donor kidney grafts release distinct EV subsets during NMP. Because these subsets correlate with well-established indicators of transplant outcome, EVs might represent new potential candidates for assessment of kidney graft quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.