Abstract

ObjectiveOur recent studies using a porcine model of metabolic syndrome (MS) and chronic myocardial ischemia show that extracellular vesicle (EV) therapy improves blood flow and arteriogenesis in ischemic myocardium, although mechanisms of these changes are unclear. We hypothesized that in the setting of MS, EV therapy would decrease antiangiogenic signaling to mediate increased blood flow to chronically ischemic myocardium. MethodsYorkshire swine were fed a high-fat diet for 4 weeks to induce MS, then underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs underwent intramyocardial injection of vehicle (control, n = 6) or human bone marrow-derived EVs (n = 8). Five weeks later, left ventricular myocardium in ischemic territory was harvested. Protein expression was measured using immunoblot analysis, and data were analyzed using Wilcoxon rank sum test. Myocardial perfusion was measured with isotope-labeled microspheres, and correlation data were analyzed using Spearman rank correlation coefficient. ResultsEV treatment was associated with decreased expression of antiangiogenic proteins, angiostatin (P < .001) and endostatin (P = .043) in ischemic myocardium compared with control. In EV-treated pigs, there was a negative correlation between blood flow to ischemic myocardium and angiostatin (rs = −0.76; P = .037), but not endostatin expression (rs = .02; P = .98). EV treatment was also associated with decreased cathepsin D, which cleaves precursors to produce angiostatin and endostatin, in ischemic myocardium (P = .020). ConclusionsIn the setting of MS and chronic myocardial ischemia, EV therapy is associated with decreased expression of antiangiogenic proteins, which might contribute to increased blood flow to chronically ischemic myocardium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.