Abstract

AbstractExtracellular vesicles (EVs) derived from differentiating induced stem cells maintain their original stemness and differentiating trends and possess strong immunoregulatory capability. Biomaterials equipped with EVs are very promising in regenerative medicine. However, surface EV‐decoration on osteoimplants remains a challenge, due to the complexity of traditional molecular conjugations and the fragility of EVs. Here, mussel‐like molecular adhesion is combined with bioorthogonal click conjugation to introduce EVs on titanium (Ti) implants. The biomimetic adhesion and clickable molecular linkage allow mild and stable tethering of pre‐osteogenic mesenchymal stem cell (MSC)‐derived EVs on Ti implants. EV‐decorated implants exhibit significantly enhanced osseointegration on the bone‐implant surface under diabetic conditions, promoting increased expression of osteogenic genes. Modified surfaces impelled phenotypic alterations in macrophage polarization via multi‐pathway regulation, decreasing proinflammatory M1 macrophage formation, which can lead to the promotion of surface osteogenesis. On Ti rods implanted in a diabetic rat model, EV coating inhibited M1macrophages around the prosthesis, resulting in satisfactory long‐term osseointegration. This study offers a new perspective to represent a simple and effective means for surface EV decoration, providing an osteoimmunomodulatory effect to enhance the diabetic osseointegration of implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.