Abstract
To elucidate the molecular mechanism governing fatty acid transport across the cell membrane, we first isolated a Saccharomyces cerevisiae mutant, B-1, that exhibits a reduced acyl-CoA oxidase activity and an increase in free fatty acid accumulation. Following mutagenesis of B-1, a mutant, YTS51, which secretes free fatty acids, was isolated. The concentration of free fatty acids in the YTS51 culture medium was about 17 times higher than that in B-1. The mutation that causes the fatty acid secretion phenotype occurred at a single allele, and this phenotype was suppressed by the introduction of a single copy of FAA1, a gene for acyl-CoA Synthetase, to the mutant. Although the mutation expressing this phenotype was not within FAA1 in YTS51, the disruption of FAA1 in the wild-type strain resulted in fatty acid secretion even though the level of fatty acid secretion was less than that in YTS51. We consider that YTS51 is a suitable model to elucidate the molecular basis of the fatty acid transport process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.