Abstract

Arsenic (As) contamination of water poses severe threats to human health and thus requires effective remediation methods. In this study, Synechocystis PCC6803, a model cyanobacterium common in aquatic environments, was used to investigate the role of extracellular polymeric substances (EPS) in As toxicity, accumulation, and transformation processes. We monitored the growth of Synechocystis with As exposure, measured the zeta potential and binding sites on the cell surface, and analysed As accumulation and speciation in Synechocystis cells with and without EPS. After EPS removal, the binding sites and zeta potential of the cell surface decreased by 44.43% and 31.9%, respectively. The growth of Synechocystis decreased 49.4% and 43.7% with As(III) and As(V) exposure, and As accumulation in the cells decreased by 12.8–44.5% and 14–42.7%, respectively. As absorption was enhanced in cells with EPS removed. The oxidation of As(III) and reduction of As(V) were significantly greater in cells with intact EPS compared to those with EPS removed. Fourier transform infrared spectroscopy (FTIR) showed that functional groups of EPS and Synechocystis cells, including –NH, –OH, CO, and CC, interacted with As species. Together the results of this work demonstrate that EPS have significant impacts on cell surface properties, thereby affecting As accumulation and transformation in Synechocystis PCC6803. This work provides a basis for using EPS to remedy As pollution in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call