Abstract
Metastasis is one of the major challenges in the treatment of colorectal cancer (CRC), during which cancer-associated fibroblasts (CAFs) in the tumor microenvironment are critically involved. In this study, we aim to explore the regulatory role of extracellular nicotinamide phosphoribosyltransferase Visfatin and its impact on CRC metastasis. To examine the effect of visfatin on CAFs, human CRC tissue-derived CAFs were exposed to visfatin, and the expression of inflammatory factors, activation of JAK-STAT pathway and production of ROS in CAFs were assessed. To examine the effect of visfatin-treated CAFs on CRC metastasis, human CRC cell line SW480 or SW620 were cultured with the conditioned medium derived from visfatin-treated CAFs, and the invasion and migration ability of SW480 or SW620 cells were evaluated by transwell migration and matrigel invasion assays. Our previous study found that visfatin, a secreted form of nicotinamide phosphoribosyltransferase that governs the rate-limiting step of NAD synthesis, promoted CRC metastasis. However, little is known about the effect of visfatin on CAFs. The conditioned medium derived from visfatin- treated CAFs promotes the migratory and invasive capability of CRC cells, and enhance lung metastasis in mouse model. Visfatin treatment stimulated the expression of a couple of inflammatory factors in CAFs, which was mediated by visfatin-induced activation of JAK- STAT pathway and accumulation of ROS. Inhibition of JAK-STAT pathway or neutralization of cellular ROS attenuated visfatin-mediated migration and invasion of CRC cells. The present work highlights a critical role of visfatin in the crosstalk between CRC cells and CAFs, which moonlight as a non-metabolic extracellular signal molecule to hijacks JAK-STAT pathway in CAFs to promote CRC metastasis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have