Abstract

The secondary palate arises from outgrowths of epithelia-covered embryonic mesenchyme that grow from the maxillary prominence, remodel to meet over the tongue, and fuse at the midline. These events require the coordination of cell proliferation, migration, and gene expression, all of which take place in the context of the extracellular matrix (ECM). Palatal cells generate their ECM, and then stiffen, degrade, or otherwise modify its properties to achieve the required cell movement and organization during palatogenesis. The ECM, in turn, acts on the cells through their matrix receptors to change their gene expression and thus their phenotype. The number of ECM-related gene mutations that cause cleft palate in mice and humans is a testament to the crucial role the matrix plays in palate development and a reminder that understanding that role is vital to our progress in treating palate deformities. This article will review the known ECM constituents at each stage of palatogenesis, the mechanisms of tissue reorganization and cell migration through the palatal ECM, the reciprocal relationship between the ECM and gene expression, and human syndromes with cleft palate that arise from mutations of ECM proteins and their regulators. Anat Rec, 2019. © 2019 American Association for Anatomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.