Abstract

Fibronectin is an adhesive glycoprotein that is polymerized into extracellular matrices via a tightly regulated, cell-dependent process. Here, we demonstrate that fibronectin matrix polymerization induces the self-assembly of multicellular structures in vitro, termed tissue bodies. Fibronectin-null mouse embryonic fibroblasts adherent to compliant gels of polymerized type I collagen failed to spread or proliferate. In contrast, addition of fibronectin to collagen-adherent fibronectin-null mouse embryonic fibroblasts resulted in a dose-dependent increase in cell number, and induced the formation of three-dimensional (3D) multicellular structures that remained adherent and well-spread on the native collagen substrate. An extensive fibrillar fibronectin matrix formed throughout the microtissue. Blocking fibronectin matrix polymerization inhibited both cell proliferation and microtissue formation, demonstrating the importance of fibronectin fibrillogenesis in triggering cellular self-organization. Cell proliferation, tissue body formation, and tissue body shape were dependent on both fibronectin and collagen concentrations, suggesting that the relative proportion of collagen and fibronectin fibrils polymerized into the extracellular matrix influences the extent of cell proliferation and the final shape of microtissues. These data demonstrate a novel role for cell-mediated fibronectin fibrillogenesis in the formation and vertical assembly of microtissues, and provide a novel approach for engineering complex tissue architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.