Abstract

The migration of neural crest and sclerotome cells and the extension of ventral root axons in chick embryos at stages 16-20 were studied by light microscopy as well as scanning and transmission electron microscopy at the leg bud level of fixed specimens. Extensive cellular movements take place in association with an extracellular matrix consisting of microfibrils. The neural crest and sclerotome cells migrate into the large matrix-filled extracellular space surrounding the neural tube and notochord, apparently using microfibril microfibril bundles as substratum. The cells exhibit pseudopodia which are closely associated with the matrix fibrils. The fibrils around the notochord show a spatial arrangement indicating that the sclerotome cells are contact-guided to their subsequent positions. Mutual cell contacts, including those established by cell processes, frequently show cytoplasmic electron dense plaques at adjacent membranes. These small "plaque contacts" might be correlated to contact inhibition of locomotion between the cells and participate in the guidance of cells. The growth cones of extending axons exhibit filopodia contacting both surrounding mesenchyme cells and extracellular fibrils. The orientation of the axons might thus be affected by contacts with cell surfaces as well as with extracellular material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.