Abstract

The initiation of hypoxic pulmonary vasoconstriction (HPV) involves an increase in cytosolic calcium ([Ca(2+)](i)) in pulmonary artery (PA) smooth muscle cells (PASMCs). Both the processes depend on extracellular Ca(2+). Extracellular Ca(2+) can be sensed by extracellular calcium-sensing receptor (CaSR). This study aims at determining whether CaSR is pivotal in the initiation of HPV. Experiments were performed in cultured PASMCs, isolated PAs, and rats including CaSR knockdown preparations. Both hypoxia and H(2)O(2) equivalent to the level achieved by hypoxia increased [Ca(2+)](i) in an extracellular Ca(2+)-dependent manner in PASMCs, and this was inhibited by CaSR knockdown or its negative allosteric modulator, Calhex231. Hypoxia-increased H(2)O(2) generation was diminished by mitochondria depletion. Mitochondria depletion abolished hypoxia-induced [Ca(2+)](i) increase (HICI), which was reversed by H(2)O(2) repletion. CaSR knockdown or Calhex231, however, prevented the reversible effect of H(2)O(2). HICI was abolished by catalase-polyethylene glycol (PEG-Catalase), not superoxide dismutase-polyethylene glycol (PEG-SOD) pretreatment, attenuated by ryanodine receptor3-knockdown or inhibition of store-operated Ca(2+) entry. HPV in vitro and in vivo was inhibited by Calhex231 and by CaSR knockdown. A novel mechanism underlying HPV is revealed by the role of CaSR in orchestrating reactive oxygen species and [Ca(2+)](i) signaling. The activation of mitochondrial H(2)O(2)-sensitized CaSR by extracellular Ca(2+) mediates HICI in PASMCs and, thus, initiates HPV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call