Abstract

In classical and quantum systems, order is of fundamental importance to many branches of science. Still, disorder is prevalent in our natural world. It manifests in various ways, and overcoming its limitations would open up exciting applications. In this work, we numerically show that disorder-induced Anderson localization can be mitigated and transmission systematically restored in random media through a self-organization process relying on energy dissipation. Under the scattering pressure produced by a driving optical field, a colloidal suspension composed of strongly polydisperse (i.e., random size) particles spontaneously assembles a Bloch-like mode with a broad transmission band. This mode displays a deterministic transmission scaling law that overcomes the statistical exponential decay expected in random media. This work demonstrates that, through the continuous dissipation of energy, amorphous materials can collectively synchronize with a coherent drive field and assemble a crystalline order. Self-organization, thus, offers a robust approach for addressing the physical limitations of disorder and immediately opens the door to applications in slow-light engineering and the development of “bottom-up” photonic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.