Abstract
The effects of external electric and magnetic fields on InP self-assembled quantum dots (QDs) were investigated by means of single dot spectroscopy. By systematically changing a bias applied to the sample, successive energy shifts of the photoluminescence (PL) peaks from excitons and biexcitons due to the quantum confined Stark effect were clearly observed. The quadratic Stark coefficient was evaluated to be of the order of ${10}^{\ensuremath{-}31}{\mathrm{Fcm}}^{2}.$ The energy separation of the PL peaks arising from the excitons and biexcitons changed with the applied electric field, reflecting a slight difference of the Stark coefficient between the exciton and biexciton states. The existence of permanent dipole moments was also revealed in both the exciton and biexciton states. The spatial separations between the electrons and holes along the growth direction in a QD were estimated to be 7 \AA{} for the exciton state, and 8 \AA{} for the biexciton state. Further, the diamagnetic shift and the Zeeman splitting of the exciton states were clearly observed in a magnetic field. It was found that the diamagnetic coefficient gradually decreases on decreasing the QD size. A simple qualitative model can explain that this result is due to competition between quantum confinement and magnetic confinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.