Abstract
We construct a Spanier-Whitehead type duality functor relating finite $\mathcal{C}$-spectra to finite $\mathcal{C}^{\mathrm{op}}$-spectra and prove that every $\mathcal{C}$-homology theory is given by taking the homotopy groups of a balanced smash product with a fixed $\mathcal{C}^{\mathrm{op}}$-spectrum. We use this to construct Chern characters for certain rational $\mathcal{C}$-homology theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.