Abstract

Abstract The effect of an external magnetic field on the supercapacitor performance of cobalt oxide/magnetic graphene composites has been investigated. The composites were prepared via the hydrothermal reaction of cobalt nitrate with iron oxide-incorporated magnetic graphene. Cobalt oxide nanoparticles were deposited on the graphene sheets and contributed to enhancing the electrochemical capacitance, since the cobalt oxide could work as pseudocapacitance material different from the graphene sheet with the electric double-layer capacitance effect. Further enhancement was observed upon applying the external magnetic field, which was increased via a home-made electric circuit. The specific capacitances of the composite materials under the external magnetic field of 1191 Gauss were found to be a maximum of 11 times higher than those without the magnetic field. It was also suggested that the increase in specific capacitance under the magnetic field follows the power law of the magnetic field due to a magnetohydrodynamic effect. These results demonstrate the importance of the external magnetic field to develop new technologies on energy-related applications of magnetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.