Abstract

This paper presents design techniques for a high power supply rejection (PSR) low drop-out (LDO) regulator. A bulky external capacitor is avoided to make the LDO suitable for system-on-chip (SoC) applications while maintaining the capability to reduce high-frequency supply noise. The paths of the power supply noise to the LDO output are analyzed, and a power supply noise cancellation circuit is developed. The PSR performance is improved by using a replica circuit that tracks the main supply noise under process-voltage-temperature variations and all operating conditions. The effectiveness of the PSR enhancement technique is experimentally verified with an LDO that was fabricated in a 0.18 µm CMOS technology with a power supply of 1.8 V. The active core chip area is 0.14 mm², and the entire proposed LDO consumes 80 µA of quiescent current during operation mode and 55 µA of quiescent current in standby mode. It has a drop-out voltage of 200 mV when delivering 50 mA to the load. The measured PSR is better than –56 dB up to 4 MHz when delivering a current of 50 mA. Compared to a conventional uncompensated LDO, the proposed architecture presents a PSR improvement of 34 dB and 25 dB at 1 MHz and 4 MHz, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.