Abstract
BackgroundExtensive drug resistance in Klebsiella pneumoniae (K. pneumoniae) causing major outbreaks in large hospitals is an emerging challenge. We describe a near fatal outbreak of colistin resistant, carbapenem resistant K. pneumoniae (CRKp) producing metallo beta-lactamases (blaNDM) and blaOXA-48 in the neonatal intensive care unit (NICU) at the background of a larger outbreak involving multiple parts of the hospital and the challenges in its containment.MethodsFollowing identification of an outbreak due to colistin resistant CRKp between April to June 2017 in the NICU, a thorough surveillance of similar cases and the hospital environment was performed to trace the source. All the isolated K. pneumoniae were tested for susceptibility to standard antibiotics by disc diffusion and microbroth dilution methods. Molecular detection of extended spectrum beta lactamases (ESBLs) and carbapenemases (classes A, B, D) genes was done. Enterobacterial repetitive intergenic consensus (ERIC) PCR and multi-locus sequence typing (MLST) was done to determine the genetic relatedness of the isolates. Characteristics of different sequence types were statistically compared (Student’s t-test).ResultsA total of 45 K. pneumoniae isolates were studied from NICU (14 cases of neonatal sepsis), ICU (18 cases), other wards (7 cases) along with 6 isolates from hospital environment and human colonizers. The primary case was identified in the ICU. All the K. pneumoniae from NICU and 94.4% from the ICU were colistin resistant CRKp. Majority (59.37% and 56.25%) harbored blaSHV/blaCTXM and blaOXA-48 genes, respectively. Two distinct sequence types ST5235 and ST5313 were noted with colistin resistance, distribution within the NICU and mortality as significant attributes of ST5235 (p < 0.05). The outbreak was contained with strengthening of the infection control practices and unintended short duration closure of the hospital.ConclusionLarge hospital outbreaks with considerable mortality can be caused by non-dominant clones of colistin resistant CRKp harboring blaOXA-48 and blaNDM carbapenemases in endemic regions. The exact global impact of these sequence types should be further studied to prevent future fatal outbreaks.
Highlights
In developing countries of Asia and Africa, Klebsiella pneumoniae (K. pneumoniae) has been the predominant pathogen responsible for nearly 50% of neonatalSharma et al Antimicrobial Resistance & Infection Control (2022) 11:1 sepsis due to Gram negative organisms [1]
We describe a fatal outbreak of extensively drug resistant K. pneumoniae (XDRKp) in the neonatal intensive care unit (NICU) at the background of a larger outbreak involving the other parts of the hospital and the course of its containment
Outbreak description The primary case of neonatal sepsis in the NICU was identified on 17th April, following which up to June 2017, sudden surge of 14 cases of neonatal sepsis due to K. pneumoniae was noticed with nearly 100% mortality (12/14, 85.71%)
Summary
Sharma et al Antimicrobial Resistance & Infection Control (2022) 11:1 sepsis due to Gram negative organisms [1] This organism possesses the highest rates of antimicrobial resistance (AMR). As against in Western countries, where carbapenem resistance is mediated by K. pneumoniae carbapenemase (KPC), in Asian countries including India, metallo beta-lactamases (MBLs) and Class D carbapenemases are the commonest causes [3]. Extensive drug resistance in Klebsiella pneumoniae (K. pneumoniae) causing major outbreaks in large hospitals is an emerging challenge. We describe a near fatal outbreak of colistin resistant, carbapenem resistant K. pneumoniae (CRKp) producing metallo beta-lactamases (blaNDM) and blaOXA-48 in the neonatal intensive care unit (NICU) at the background of a larger outbreak involving multiple parts of the hospital and the challenges in its containment
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have