Abstract

An electron rich isophthalamide based sensor IPA has been synthesized through a simple two-step reaction, containing noteworthy aggregation induced emission (AIE) properties. Considering the significant emission with λmax at 438 nm, sensor IPA has been employed for the sensing of nitrobenzene (NB) in solid, solution and vapor state with high sensitivity and selectivity. Sensor IPA showed noteworthy colorimetric and fluorometric quenching in fluorescence emission when exposed to NB. Small size of NB and involvement of photoinduced electron transfer (PET) lead to detection of NB down to 60 nM. IPA-NB interaction was studied through UV–Vis. spectroscopic studies along with fluorescence spectroscopy. Moreover, 1H and 13C NMR titration experiments provided additional support for determination of interaction type. Furthermore, by using density functional theory (DFT) calculations, thermodynamic stability was studied. Additionally, non-covalent interactions (NCI), frontier molecular orbitals (FMO), density of states (DOS), were investigated for providing further evidence of nitrobenzene sensing and its interaction with sensor. Natural bond orbital (NBO) analysis was carried out for charge transfer studies. Quantum theory of atom in molecule (QTAIM) and SAPT0 studies provided information about interaction points and binding energy. Additionally, IPA was investigated for NB sensing in real water samples, and its effective participation in solid state on-site detection as well as in solution phase was brought to light along with logic gate construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call