Abstract

Many gene families in mammals have members that are expressed more or less uniquely in the retina or differentially in specific retinal cell types. We describe here analyses of nine such gene families with regard to phylogenetic relationships and chromosomal location. The families are opsins, G proteins (α, β, and γ subunits), phosphodiesterases type 6, cyclic nucleotide-gated channels, G-protein-coupled receptor kinases, arrestins, and recoverins. The results suggest that multiple new gene copies arose in all of these families very early in vertebrate evolution during a period with extensive gene duplications. Many of the new genes arose through duplications of large chromosome regions (blocks of genes) or even entire chromosomes, as shown by linkage with other gene families. Some of the phototransduction families belong to the same duplicated regions and were thus duplicated simultaneously. We conclude that gene duplications in early vertebrate evolution probably helped facilitate the specialization of the retina and the subspecialization of different retinal cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.