Abstract

The electronic states of the BBr molecule, including 12 valence states and 12 low-lying Rydberg states, have been studied at the theoretical level of MR-CISD+Q with all-electron aug-cc-pVQZ basis sets and Douglas-Kroll [Ann. Phys. (N.Y.) 82, 89 (1974)] scalar relativistic correction. The spin-orbit coupling effect in the valence states was calculated by the state interaction approach with the full Breit-Pauli Hamiltonian. This is the first multireference ab initio study of the excited electronic states of BBr. Potential energy curves of all states were plotted with the help of the avoided crossing rule between electronic states of the same symmetry. The structural properties of these states were analyzed. Computational results reproduced most experimental data well. The transition properties of the a (3)Pi(0(+) ), a (3)Pi(1), and A (1)Pi(1) states to the ground state X (1)Sigma(0(+) ) (+) transitions were obtained, including the transition dipole moments, the Franck-Condon factors, and the radiative lifetimes. The evaluated radiative lifetime of the a (3)Pi(0(+) ), and a (3)Pi(1) states are near 1 ms, much longer than that of the A (1)Pi(1) state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.