Abstract

We consider ensemble classification when there is no common labeled data for designing the function which aggregates classifier decisions. In recent work, we dubbed this problem distributed ensemble classification, addressing when local classifiers are trained on different (e.g., proprietary, legacy) databases or operate on different sensing modalities. Typically, fixed ( untrained) rules of classifier combination such as voting methods are used in this case. However, these may perform poorly, especially when (i) the local class priors, used in training, differ from the true (test batch) priors and (ii) classifier decisions are statistically dependent. Alternatively, we proposed several transductive methods, optimizing the combining rule for objective functions measured on the test batch. We proposed both maximum likelihood (ML) and constraint-based (CB) objectives and found that CB achieved superior performance. Here, we develop CB extensions (i) for sequential decisionmaking and (ii) exploiting additional class information contained in the local classifier feature vectors. The new sequential method is applied to biometric authentication. We demonstrate these new CB methods achieve better ensemble decision accuracy than methods which apply fixed rules in combining classifier decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.