Abstract

AbstractThe theoretical and practical virtual of local learning algorithms had been verified by the machine learning community. The selection of the proper local classifier, however, remains a challenging problem. Rather than selecting one single local classifier, in this paper, we propose to choose several local classifiers and use adaptive fusion strategy to alleviate the choice problem of the proper local classifier. Based on the fast and scalable local kernel support vector machine (FaLK-SVM), we adopt the self-adaptive weighting fusion method for combining local support vector machine classifiers (FaLK-SVMa), and provide two fusion methods, distance-based weighting (FaLK-SVMad) and rank-based weighting methods (FaLK-SVMar). Experimental results on fourteen UCI datasets and three large scale datasets show that FaLK-SVMa can chieve higher classification accuracy than FaLK-SVM.KeywordsKernel methodsupport vector machinelocal learningclassifier fusionnearest neighbors

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.