Abstract

For each $1\le p<\infty$, the classical Cesàro operator $\mathcal C$ from the Hardy space $H^p$ to itself has the property that there exist analytic functions $f\notin H^p$ with ${\mathcal C}(f)\in H^p$. This article deals with the identification and properties of the (Banach) space $[{\mathcal C}, H^p]$ consisting of all analytic functions that $\mathcal C$ maps into $H^p$. It is shown that $[{\mathcal C}, H^p]$ contains classical Banach spaces of analytic functions $X$, genuinely bigger that $H^p$, such that $\mathcal C$ has a continuous $H^p$-valued extension to $X$. An important feature is that $[{\mathcal C}, H^p]$ is the largest amongst all such spaces $X$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.