Abstract

Starting with a conformal Quantum Field Theory on the real line, we show that the dual net is still conformal with respect to a new representation of the Moebius group. We infer from this that every conformal net is normal and conormal, namely the local von Neumann algebra associated with an interval coincides with its double relative commutant inside the local von Neumann algebra associated with any larger interval. The net and the dual net give together rise to an infinite dimensional symmetry group, of which we study a class of positive energy irreducible representations. We mention how superselsection sectors extend to the dual net and we illustrate by examples how, in general, this process generates solitonic sectors. We describe the free theories associated with the lowest weight n representations of PSL(2,R), showing that they violate 3-regularity for n>2. When n>1, we obtain examples of non Moebius-covariant sectors of a 3-regular (non 4-regular) net.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.