Abstract

Liquid foams are widely used in industry for their high effective viscosity, whose local origin is still unclear. This Letter presents new results on the extension of a suspended soap film, in a configuration mimicking the elementary deformation occurring during foam shearing. We evidence a surprising two-step evolution: the film first extends homogeneously, then its extension stops, and a new thicker film is extracted from the meniscus. The second step is independent of the nature of the surfactant solution, whereas the initial extension is only observed for surfactant solutions with negligible dilatational moduli. We predict this complex behavior using a model based on Frankel's theory and on interface rigidification induced by confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.