Abstract

A vector measure (countable additive set function with values in a Banach space) on a field may be extended to a vector measure on the generated σ- field, under certain hypotheses. For example, the extension is established for the bounded variation case [2, 5, 8], and there are more general conditions under which the extension exists [ 1 ]. The above results have as hypotheses fairly strong boundedness conditions on the n o rm of the measure to be extended. In this paper we prove an extension theorem of the same type with a restriction on the range, supposing further that the measure is merely bounded. In fact a vector measure on a σ- field is bounded (III. 4. 5 of [3]) but it is conceivable that a vector measure on a field could be unbounded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.