Abstract

Let μ be a vector measure (countably additive set function with values in a Banach space) on a field. If μ is of bounded variation, it extends to a vector measure on the generated σ-field (2; 5; 8). Arsene and Strătilă (1) have obtained a result, which when specialized somewhat in form and context, reads as follows: “A vector measure on a field, majorized in norm by a positive, finite, subadditive increasing set function defined on the generated σ-field, extends to a vector measure on the generated σ-field”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.