Abstract

The reactor code DYN3D was developed at the Helmholtz-Zentrum Dresden-Rossendorf to study steady state and transient behavior of Light Water Reactors. Concerning the neutronics part, the multigroup diffusion or SP3 transport equation based on nodal expansion methods is solved both for hexagonal and square fuel element geometry. To deal with Block-type High Temperature Reactor cores DYN3D was extended to a version DYN3D-HTR. A 3D heat conduction model was introduced to include 3D effects of heat transfer and heat conduction and the detailed structure of the fuel element. Homogenized neutronic cross sections were generated by applying a Monte Carlo approach with resolution of each individual TRISO fuel particle. Results of coupled steady state and transient calculations with 12 energy groups are presented. Transient case studies are control rod insertion, a change of the inlet coolant temperature and a change of the coolant gas mass flow rate. It is shown that DYN3D-HTR is an appropriate code system to simulate steady states and short time transients. Furthermore the necessity of the 3D heat conduction model is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.