Abstract

BackgroundA torn rotator cuff tendon will retract over time causing changes in muscle properties and decreasing its extensibility, or deformation. During surgery, large tensile loads are applied to bring the torn tendon to the footprint. Poor muscle extensibility and large tensile stresses at the repair might lead to gap formation or re-tear of the repair. A quantitative evaluation of muscle properties could be used to predict the extensibility of the supraspinatus (SSP) muscle. MethodMagnetic resonance imaging (MRI)-measured volumetric fat fraction and shear wave elastography (SWE)-measured elastic modulus of the SSP muscle were obtained on seventeen cadaveric shoulders. Experimental extensibility and stiffness were then measured by axially pulling the tendon up-to 60 N. Univariate and multivariate analyses were used to determine the correlation and contribution of fat fraction and elastic modulus to experimental outcomes. FindingsSWE moduli negatively correlated with SSP muscle extensibility (r = 0.54–0.58, P ≤ 0.0259); fat fraction resulted in a positive correlation (r = 0.69, P = 0.0021). SWE measurements, solely, explained up to 34% and 33% of the variability in measured extensibility and stiffness, respectively. Fat Fraction, solely, explained 48% of the variability in extensibility and 36% of the variability in stiffness. These methods combined predicted up to 62% of the musculotendinous extensibility. InterpretationThis study showed a comprehensive quantitative assessment of SSP muscle properties using SWE to estimate stiffness and MRI to measure fatty infiltration. The extensibility of the detached muscle/tendon unit was highly correlated to material properties of the muscle when these methods were used in combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.