Abstract

Recognizing that climate influences both annual tree-ring growth and glacier mass balance, changes in the mass balance of Place Glacier, British Columbia, were documented from increment core records. Annually resolved ring-width (RW), maximum (MXD), and mean density (MD) chronologies were developed from Engelmann spruce and Douglas-fir trees sampled at sites within the surrounding region. A snowpack record dating to AD 1730 was reconstructed using a multivariate regression of spruce MD and fir RW chronologies. Spruce MXD and RW chronologies were used to reconstruct winter mass balance (Bw) for Place Glacier to AD 1585. Summer mass balance (Bs) was reconstructed using the RW chronology from spruce, and net balance was calculated from Bw and Bs. The reconstructions provide insight into the changes that snowpack and mass balance have undergone in the last 400 years, as well as identifying relationships to air temperature and circulation indices in southern British Columbia. These changes are consistent with other regional mass-balance reconstructions and indicate that the persistent weather systems characterizing large scale climate-forcing mechanisms play a significant glaciological role in this region. A comparison to dated moraine surfaces in the surrounding region substantiates that the mass-balance shifts recorded in the proxy data are evident in the response of glaciers throughout the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.