Abstract

The intention of this research was to explore whether dendroclimatological relationships could be used to reconstruct long-term proxy records of ‘Little Ice Age’ glacier mass balance changes in the southern Coast Mountains of British Columbia. Tree-ring width chronologies from the Mt Waddington area were used in concert with historical glacier records to construct models spanning the past 450 years. The approach was to build models that were based on derived relationships between tree-ring growth and glacier mass balance: (1) warmer temperatures in the summer positively influence tree growth but are detrimental to glacier health; (2) colder temperatures during the winter and deeper snowpack have a negative impact on tree growth, whereas they are related to greater accumulation on the glacier during the winter season. Stepwise regression analyses were applied to tree-ring chronologies to predict glacier mass balance at local and regional scales. The models of net annual balance for the region (regional data set) show that periods of positive mass balance occurred in the AD 1750s, 1820s to 1830s and 1970s. Peaks of winter balance correspond closely to these periods, showing a sharp drop in winter mass balance towards the end of the nineteenth century. Wavelet analyses suggest that glacial mass balance regimes in the region respond synchronously to Pacific Ocean circulation systems such as the El Niño Southern Oscillation and the Pacific Decadal Oscillation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call