Abstract
Most neurological diseases are associated with abnormal brain asymmetries. Recent advances in automatic unsupervised techniques model normal brain asymmetries from healthy subjects only and treat anomalies as outliers. Outlier detection is usually done in a common standard coordinate space that limits its usability. To alleviate the problem, we extend a recent fully unsupervised supervoxel-based approach (SAAD) for abnormal asymmetry detection in the native image space of MR brain images. Experimental results using our new method, called N-SAAD, show that it can achieve higher accuracy in detection with considerably less false positives than a method based on unsupervised deep learning for a large set of MR-T1 images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.