Abstract
In this work, a new two-grid method presented for the elliptic partial differential equations is generalized to the time-dependent linear parabolic partial differential equations. The new two-grid waveform relaxation method uses the numerical method of lines, replacing any spatial derivative by a discrete formula, obtained here by the finite element method. A convergence analysis in terms of the spectral radius of the corresponding two-grid waveform relaxation operator is also developed. Moreover, the efficiency of the presented method and its analysis are tested, applying the twodimensional heat equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.