Abstract

In this paper, we propose an eXtended Virtual Element Method (X-VEM) for two-dimensional linear elastic fracture. This approach, which is an extension of the standard Virtual Element Method (VEM), facilitates mesh-independent modeling of crack discontinuities and elastic crack-tip singularities on general polygonal meshes. For elastic fracture in the X-VEM, the standard virtual element space is augmented by additional basis functions that are constructed by multiplying standard virtual basis functions by suitable enrichment fields, such as asymptotic mixed-mode crack-tip solutions. The design of the X-VEM requires an extended projector that maps functions lying in the extended virtual element space onto a set spanned by linear polynomials and the enrichment fields. An efficient scheme to compute the mixed-mode stress intensity factors using the domain form of the interaction integral is described. The formulation permits integration of weakly singular functions to be performed over the boundary edges of the element. Numerical experiments are conducted on benchmark mixed-mode linear elastic fracture problems that demonstrate the sound accuracy and optimal convergence in energy of the proposed formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.