Abstract

In this paper, we investigate the capability of the recently proposed extended virtual element method (X-VEM) to efficiently and accurately solve the problem of a cracked prismatic beam under pure torsion, mathematically described by the Poisson equation in terms of a scalar stress function. This problem is representative of a wide class of elliptic problems for which classic finite element approximations tend to converge poorly, due to the presence of singularities. The X-VEM is a stabilized Galerkin formulation on arbitrary polygonal meshes derived from the virtual element method (VEM) by augmenting the standard virtual element space with an additional contribution that consists of the product of virtual nodal basis functions with a suitable enrichment function. In addition, an extended projector that maps functions lying in the extended virtual element space onto linear polynomials and the enrichment function is employed. Convergence of the method on both quadrilateral and polygonal meshes for the cracked beam torsion problem is studied by means of numerical experiments. The computed results affirm the sound accuracy of the method and demonstrate a significantly improved convergence rate, both in terms of energy and stress intensity factor, when compared to standard finite element method and VEM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.