Abstract
We present in this paper a novel and efficient computational approach in terms of triangular extended stochastic finite element method (T-XSFEM) for simulation of random void problems. The present T-XSFEM is further enhanced by local mesh refinement with the aid of variable-node elements to couple/link different mesh-scales, increasing the efficiency of the developed approach and saving the computational cost. The degrees of freedom are approximated with a truncated generalized polynomial chaos (GPC). The present work depends on the extension of extended finite element method (XFEM) to the stochastic context, containing implicit expression of voids through the random level set functions. A new partition technique is defined to divide the random domain for integration by using a priori knowledge of the void shape function, which can further reduce the computational time. To show the effectiveness and accuracy of the developed approach, numerical experiments are studied and computed results are compared with existing reference solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.