Abstract
The question of the conditions under which one-dimensional systems support extended electronic eigenstates is addressed in a very general context. Using real-space renormalization-group arguements we discuss the precise criteria for determining the entire spectrum of extended eigenstates and the corresponding eigenfunctions in disordered as well as quasiperiodic systems. For purposes of illustration we calculate a few selected eigenvalues and the corresponding extended eigenfunctions for the quasiperiodic copper-mean chain. So far, for the infinite copper-mean chain, only a single energy has been numerically shown to support an extended eigenstate [J. Q. You, J. R. Yan, T. Xie, X. Zeng, and J. X. Zhong, J. Phys.: Condens. Matter 3, 7255 (1991)]: we show analytically that there is in fact an infinite number of extended eigenstates in this lattice which form fragmented minibands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.