Abstract

This paper investigates the relative position tracking and attitude synchronization problem of a chaser spacecraft rendezvous and docking with an uncontrolled tumbling target in the presence of external disturbances and actuator saturation. By combining the extended state observer technique with backstepping control methodology, a robust output-feedback control strategy with no precise motion information of the tumbling target is proposed. Moreover, a particular Nussbaum-type function is introduced to compensate for the nonlinear terms arising for actuator saturation. Within the Lyapunov framework, it is then shown that the proposed control strategy can guarantee the relative position and attitude errors converge into small regions containing the origin. Finally, numerical simulations are carried out to verify the effectiveness of the designed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.