Abstract

Little is known about bacteria that produce extended-spectrum beta-lactamases (ESBLs) and carbapenemase in patients with urinary tract infections (UTIs) in Tigrai, Ethiopia. The aim of this study was to describe the magnitude of ESBL- and carbapenemase -producing gram-negative bacteria among patients suspected of community- and hospital-acquired UTIs at a referral hospital in Tigrai, Ethiopia. A cross-sectional study was conducted at Ayder Comprehensive Specialized hospital from January 2020 to June 2020. A 10-20 mL sample of morning mid-stream and catheter urine was collected from consenting participants. Urine samples were cultured on cysteine lactose electrolyte deficient medium and MacConkey agar, and bacteria were identified using standard microbiological protocols. The Kirby-Bauer disk diffusion method was used for antimicrobial susceptibility testing. The combination disk and modified Hodge tests were used detect ESBL and carbapenemase production, respectively. The data was entered into EPI 3.1 software and analyzed using SPSS version 21. Overall, 67 gram-negative bacteria were recovered from 64 participants. Escherichia coli was the predominant isolate (68.6%), followed by Klebsiella pneumoniae (22.4%), while ESBL production was found in both Escherichia coli and Klebsiella pneumoniae (52.2% and 86.7%, respectively). Isolates recovered from patients with hospital-acquired UTIs were more likely to produce ESBLs (AOR= 16.2; 95% CI: 2.95-89.5). Carbapenemase was produced by 4.3% of E. coli and 20% of Klebsiella pneumoniae isolates. High resistance rates were found against tetracycline (84.8%), ampicillin (78.3%), amoxicillin/clavulanic acid (58.7%) for Escherichia coli isolates and against ampicillin (93.3%), sulphamethexazole trimethoprim (93.3%), cefotaxime (86.6%), and ceftazidime (86.6%), and tetracycline (73.3%) for Klebsiella pneumoniae. Most UTIs were caused by ESBL-producing bacteria, especially those that were related to healthcare. Microbiological-based therapy for patients with UTIs is essential at our study site due to high rates of ESBL and significant carbapenemase production with concomitant high rates of drug resistance to several antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call