Abstract
The storage stability of amperometric enzyme electrodes has been enhanced by a combination of a soluble, positively charged polymer, diethylaminoethyl (DEAE)-dextran, and a sugar alcohol, lactitol. Two different types of alcohol biosensor have been produced using the enzyme alcohol oxidase, isolated from the methylotrophic yeast Hansenula polymorpha. The first employs enzyme entrapment between two membranes with direct hydrogen peroxide amperometry at +0·65 V. The second was based on the mediated, coupled reaction with horseradish peroxidase and N-methyl phenazimiumtetracyanoquinonedimethane (NMP-TCNQ) on a graphite electrode. In both cases, addition of the stabilizers promoted a considerable increase in the storage stability of the enzyme component, as indicated by an increase in the shelf life of desiccated biosensors under conditions of thermal stress at 37°C. In addition, an L-glutamate biosensor constructed from NMP-TCNQ-modified graphite electrodes and L-glutamate oxidase also exhibited an increase in shelf life when stored, desiccated in the presence of stabilizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.