Abstract
Battery and energy management methodologies have been proposed to address the design challenges of driving range and battery lifetime in electric vehicles (EVs). However, the driving behavior is a major factor which has been neglected in these methodologies. In this paper, we propose a novel context-aware methodology to estimate the driving behavior in terms of future vehicle speeds and integrate this capability into EV energy management. We implement a driving behavior model using a variation of artificial neural networks called nonlinear autoregressive model with eXogenous inputs (NARX). We train our novel context-aware NARX model based on historical behavior of real drivers, their recent driving reactions, and route average speed retrieved from Google Maps in order to enable driver-specific and self-adaptive driving behavior modeling and long-term estimation. We analyze the estimation error of our methodology and its impact on a battery lifetime-aware automotive climate control, comparing to the state-of-the-art methodologies for various estimation window sizes. Our methodology shows only 12% error for up to 30-s speed prediction which is an improvement of 27% compared to the state-of-the-art. Therefore, the higher accuracy helps the controller to achieve up to 82% of the maximum energy saving and battery lifetime improvement achievable in ideal methodology where the future vehicle speeds are known.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have