Abstract

The thermal conductivity of nanofluids depends on factors such as particle size, volume fraction of particles in the suspension and intrinsic thermal conductivities of the base fluid and particles. To account for these factors, the traditional Maxwell model for the effective thermal conductivity of a mixture is modified to account for nonlocal heat transport that can arise due to the small characteristic length in a nanofluid – the particle size thus naturally appears in the modified model. The resulting model is calibrated and validated with experimental measurements of alumina nanofluids: overall, good agreement is found. Furthermore, the modified model is shown to be consistent in the limits of only the base liquid as well as for large particle sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.