Abstract

In this study, an extended Kalman filter (EKF)-based estimation algorithm is presented to improve the speed-sensored control performance of induction motors (IMs). The proposed EKF-based estimation algorithm is to simultaneously estimate the stator stationary axis components of stator currents and rotor fluxes, rotor angular speed, load torque including viscous friction term, rotor resistance and magnetising inductance in a single EKF algorithm without requiring any switching operation or a hybrid structure. In order to improve the speed-sensored control performance, the measurement/output matrix of IM model is extended by the measured rotor speed in addition to stationary axis components of the measured stator currents. Therefore, the proposed EKF algorithm uses the speed and stator current errors between the measured and priori estimation values in order to calculate the posterior estimation ones. For performance evaluation, the eighth order (proposed) EKF algorithm is tested by simulations and real-time experiments under challenging scenarios and compared with the developed sixth order EKF in real time. The obtained real-time results also show that the eighth order (proposed) EKF algorithm provides additional and improved estimations with the increased but feasible execution time in terms of the sixth order EKF designed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.