Abstract

We derive the extended fluctuation theorems in presence of multiple measurements and feedback, when the system is governed by Hamiltonian dynamics. We use only the forward phase space trajectories in the derivation. However, to obtain an expression for the efficacy parameter, we must necessarily use the notion of reverse trajectory. Our results show that the correction term appearing in the exponent of the extended fluctuation theorems is non-unique, whereas the physical meaning of the efficacy parameter is unique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.