Abstract
Si films grown epitaxially by low-temperature electron–cyclotron resonance chemical-vapor deposition (ECRCVD) were investigated by analyzing extended defects in these films. Extended defects were made visible by Secco etching and scanning (SEM) and transmission (TEM) electron microscopy were used to analyze them in detail. Films grown on Si(1 0 0) wafers show different kinds of etch pits with characteristic shapes, sizes and crystallographic alignments. Their correlation to crystallographic defects is discussed. The typical total etch pit density for boron-doped samples grown at 580 °C on Si wafers is in the range of 10 8 cm −2. Films grown on poly-Si seed layers on glass are strongly affected by Secco etch due to growth regions of different structural qualities and a high density of extended defects. Solar cell test structures were prepared from both types of samples and their results discussed in view to the density of extended defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.