Abstract

The presence of Activity Cliffs (ACs) has been known to represent a challenge for QSAR modeling. With its high data dependency, Machine Learning QSAR models will be directly influenced by the activity landscape. We propose several extended similarity and extended SALI methods to study the implications of ACs distribution on the training and test sets on the model's errors. Ununiform ACs and chemical space distribution tend to lead to worse models than the proposed uniform methods. ML modeling on AC-rich sets needs to be analyzed case-by-case. Proposed methods can be used as a tool to study the datasets, but as far as generalization, random splitting was the better-performing data splitting alternative overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.